

Additive Manufacturing mit Lasersintern – (fast)

unbeschränkte Gestaltungsmöglichkeiten in der industriellen Fertigung

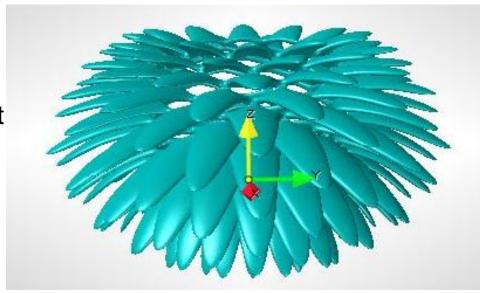
FKM – Kurzvorstellung

- FKM, der Name ist Programm
 (funktionsfähige Bauteile aus Kunststoff und Metall)
- Gründung 1994
 erster Dienstleister im Bereich Laser Sintering in Deutschland
- von Beginn an Spezialisierung auf das Lasersinter-Verfahren
- aktuell 27 Anlagen, davon 22 für Kunststoff und 5 Metall
- unser Team zählt 26 Mitarbeiter
- Bearbeitung von mehr als 5.000 Produktionsaufträgen in 2014
- seit 2014 in einem neuen Werk (mit ca. 3.000 m²)
- zertifiziert nach DIN EN ISO 9001 : 2008 and 14001:2004.

"Selektives Lasersintern (SLS) ist ein Verfahren, um räumliche Strukturen durch Sintern aus einem pulverförmigen Ausgangsstoff herzustellen.

Es ist ein generatives Schichtbauverfahren: Das Werkstück wird Schicht für Schicht aufgebaut. Durch die Wirkung der Laserstrahlen können so beliebige dreidimensionale Geometrien auch mit Hinterschneidungen erzeugt werden, z.B. Werkstücke, die sich in konventioneller mechanischer oder gießtechnischer Fertigung nicht herstellen lassen."

(Wikipedia)

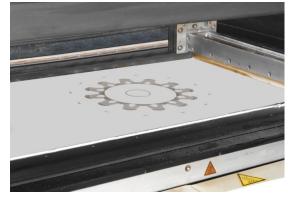


Gemeinsamkeit aller schichtbauenden oder generativen Verfahren:

- 3D CAD Daten
- Daten umwandeln in STL Format

(Beschreibung der Oberflächer von dreidimensionalen Körpern mit Hilfe von Dreiecksfacetten)


- STL Daten schneiden (slicen)
- schichtweise bauen


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

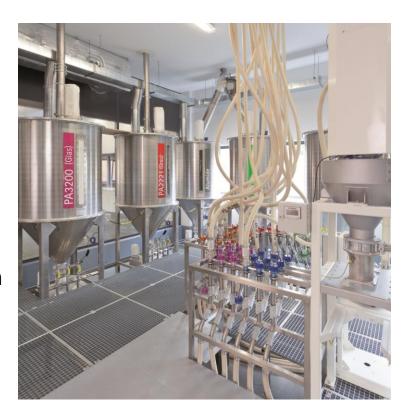
12.

Lasersintern - Möglichkeiten

- Konstruktive Freiheit neue bisher "unmögliche" Konstruktionen sind auf einmal kostengünstig realisierbar
- Funktionsintegration
 neue Anordnungen zahlreicher Funktionalitäten
- Individualisierung
 Individuelle kundenspezifische Fertigung
- Optimierung von Bauteileigenschaften durch spezielle Strukturen, die nur generativ herstellbar sind, z.B. Leichtbau oder Dämpfung

fantastische Möglichkeiten - ohne Mehrkosten

Material (Thermoplaste)



	and the same	
- PA 2200	PA 12	polyamide
- PA 2210 FR	PA 12	polyamide, fire resistande
- PA 3200 GF	PA 12	polyamide, filled with glas beads
- Alumide	PA 12	polyamide, filled with aluminium
- DuraForm	PA 12	polyamide
DuraForm Ex	PA 11	polyamide, black/white colour
DuraForm HST	PA 12	polyamide, filled with glas fibres
- PEEK HP3		poly-ether-ketone, a high-performance polymer
- TPU 92A		Polyurethan, thermoplastic

Material - Handling

- tägliche Verfügbarkeit aller Materialien, Silokapazität ca. 8 t.
- 2. Vollautomatische Herstellung definierter Rezepturen aus neuem und recykeltem Material
- 3. Pneumatische Materialzuführung auch über große Distanzen zu den Maschinen
- Schneller Chargenwechsel durch Material-Hub zwischen Silos und Maschinen

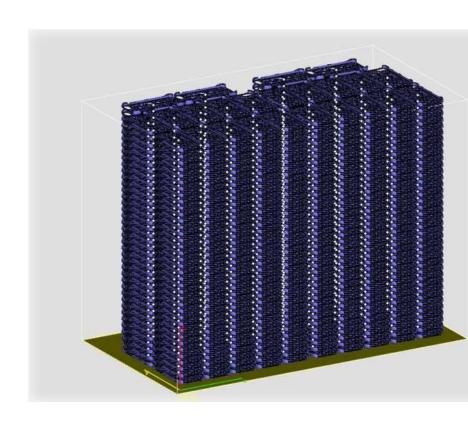
Kapazität und Flexibilität

Bauraumformate:

- 300 x 300 mm, Höhe 580 mm
- 670 x 365 mm, Höhe 580 mm
- 500 x 500 mm, Höhe 700 mm

Baurauminhalt: 2.800 Liter (22 Anlagen)

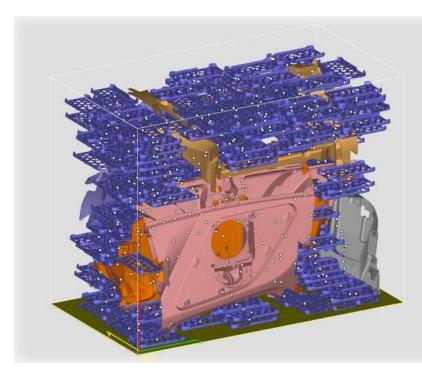
Produktion aufgrund werkzeugloser Fertigung für Kundenaufträge fast beliebig skalierbar



Cover für Smartphone

- 800 Stück in einem Baujob
- ca. 60 Stunden Maschinenlaufzeit
- ca. 48 Stunden Abkühlzeit

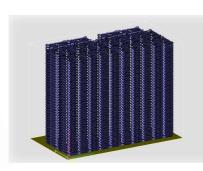
800 Stück in <u>1 Woche</u> versandbereit!

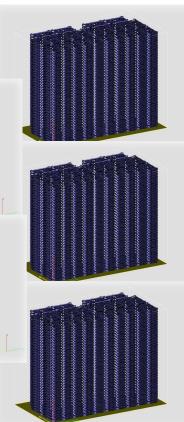

Kapazität und Flexibilität

Cover für Smartphone (kombinierte Fertigung)

- 300 Stück in einem Baujob
- ca. 48 Stunden Maschinenlaufzeit
- ca. 48 Stunden Abkühlzeit

→ 300 Stück in < 1 Woche versandbereit!</p>


Kapazität und Flexibilität


Cover für Smartphone (skalierte Fertigung)

- 800 Stück in 5 Baujobs (Maschinen) parallel
- ca. 60 Stunden Maschinenlaufzeit
- ca. 48 Stunden Abkühlzeit

→ 4.000 Stück in 1 Woche versandbereit!

Auspacken und Finishing

- vollautomatische Auspackstation (Aufgabe einer kompletten Jobbox)
- maschinelles und chemisches glätten
- färben oder lackieren
- mechanische Bearbeitung
- Montage von Baugruppen
- konfektionieren und verpacken im Kundenauftrag

Mittelkonsole

- Material PA 12 weiß/grau
- Einzelfertigung
- 24-teilig
 mit allen Funktionen

Messergriff

Material PA 12

- trowalisiert und gefärbt
- Serienfertigung

Element für Lackierroboter

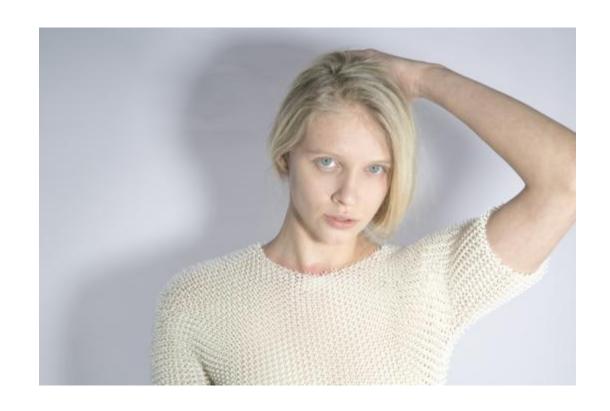
- Material PEEK HP3
- innliegende Kanäle
- Serienfertigung

pneumatisches Handlingssystem

- Material PA 12
- Einzelfertigung
- Funktionen
 greifen und klemmen,
 drehen und heben

Blutgefäße (Kind, 2 Jahre)

- Matrial PA 11
- individuelle Anfertigung (für Operationsplanung)
- Datenbasis(Computertomographie)



Kleid (Top)

Material TPU 92

- chemisch geglättet
- auxetische Struktur

Hocker - A Void

Material PA 12

- verkupfert
- Edition 7

Lasersintern - Metall

Kapazität und Flexibilität

Bauraumformate (Metall)

M 270 250 x 250 x 200 mm M 280 250 x 250 x 200 mm M2 cusing 250 x 250 x 220 mm

M2 Multilaser 250 x 250 x 280 mm (2 Laser à 200 Watt)

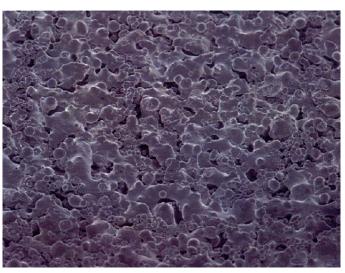
demnächst:

X Line 800 x 400 x 500 mm (2 Laser à 1.000 Watt)

Material - Metall

-CL30Al **Aluminium** AlSi10

- CL50WS **Werkzeugstahl** 1.2709

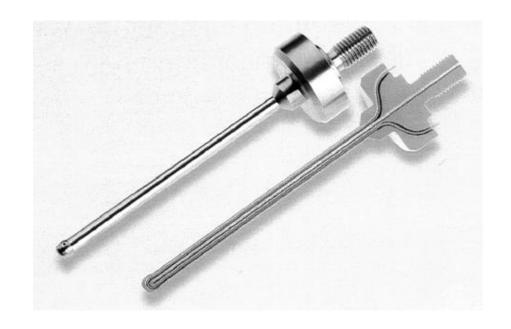

- CL20ES **Edelstahl** 1.4404

- GP1 **Edelstahl** 1.4542

- Inconel 718 **Stahl** 2.4668

-TiAl6V4 **Titan**

- SP2 **Cobalt Chrom**

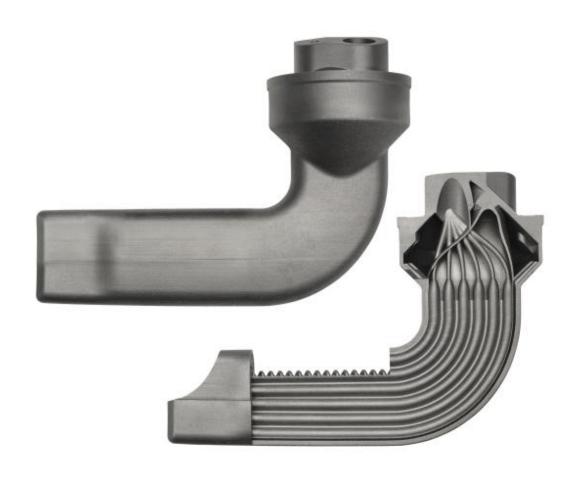


Werkzeugeinsatz mit Kühlkanal

- **Größe:** 4,5/25 x 100 mm

- Material: Werkzeugstahl

- Härte: 54 HRC



Abgassonde

Material Inconell

- Einteilig gebaut, mit innliegenden Kanälen

Spezialsieb

Material: Edelstahl

- Maschenweite 0,3 mm

Halteblech

Material: Aluminium 'AlSi12

Messonde

Material: Edelstahl

- innliegende Kanäle
- Durchmesser 0,5 mm
- Eingänge axial,
- Ausgänge radial

Qualitätskontrolle und Dokumentation

- Messen
 optisch oder taktil
- Prüfen
 Zugfestigkeit
 Schlag- und Härteprüfung usw.
- Dokumentierenz.B. Jobreports vom Bauprozeß
- EMPB (Erstmusterprüfbericht)
 (Mess- und Prüfumfang nach Lastenheft des Kunden)

