

# About an accomplished Eurostars™ project

aspect | cryogenic | spectrometers | ®

Speaker:

Dr. Tortorella, R&D Product Development, Payr Engineering GmbH

Prepared for:

FFG-Akademie: Eurostars - Was macht einen guten Antrag aus?

10 Mai 2017, ITG, WIFI Salzburg









# Outlook



- Overview of the ASPE!CT project
  - About the project
  - Implementation method
  - Results
- Must not and don't miss during:
  - Application phase
  - Project Implementation
  - Post activity and reporting
  - Payr Group Company Profile









# About the ASPE!CT project

- Adaptable <u>SP</u>ectrometer <u>E</u>nabled by <u>C</u>ryogenic <u>T</u>echnology
- Main Goal: Development of a bench-top cooling device optimized for low temperature applications and spectroscopy operating at about 1K (-272,15°C)
- Technical Area: Micro- and Nanotechnology
- Market Area: Analytical and Scientific Instrumentation
- ASPE!CT Application (March 2014, COD-1, Eurostars-2)
  - 3 Partners (2AT, 1DE), 24 months, ca. 1MEuro costs
  - EU Ranking 30
  - Kick-Off in Nov14; Accomplished in Dec17









### **About the Consortium**



PAY: Payr Engineering GmbH (Main Partner, R&D performing SME, AT)

Core Business: Engineering services, customized plant construction and prototyping

Manufacturing advanced engineering components (Payr Production GmbH)

Main project tasks: Coordination, Project Management and documentation

Driving the characterization, IPR and commercialization agenda

Manufacturing of the machined components; post-project pilot batch

LTS: Low Temperature Solutions UG (R&D performing SME, DE)

Core Business: Consulting and prototyping in ultra-low temperature technology (ULT)

Customers support for standard ULT devices

Main project tasks: Development of the Cooling Device sub-module

Supporting the commercialization phase; post-project customer support

Driving the IPR agenda

SMI: Stefan-Meyer-Institute (Research institute, AT)

Core Business: Experimental sub-atomic physics

DAQ and Academic networking

Main project tasks: Development of the Detector Platform sub-module

Driving the dissemination and new collaboration agenda

First Beta user; post-project owner of the prototype





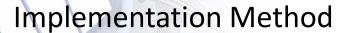




# About the Targets of the project

- Scientific Targets:
  - ✓ 0.5-1K user friendly cryogenic platform for detectors
  - ✓ Compact superconducting magnet
  - ✓ Scientific publications in the field of sub-atomic physics and low-temperature

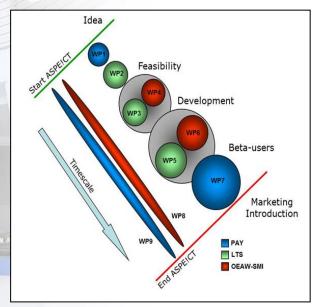
#### Commercial Targets:


- Product introduction at the end of the funded period (in a regulated ramp-up phase)
- ✓ IP generation and exploitation
- Middle-term Revenue, personnel and profit generation in DE and AT













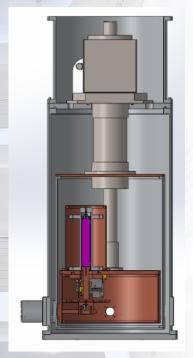

New product development (well-defined development stages)

|      | ASPE!CT Gantt Chart, Master Plan                                   | 2014   |        |        |        |        |        |        | T      | 2015   |        |        |        |        |        |        |        |         |        |        | 2016   |        |        |        |        |        |        |        |        |        |        |         |        |
|------|--------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|
| WP   | Title                                                              | Mär.14 | Apr.14 | Mai.14 | Jun.14 | Jul.14 | Aug.14 | Sep.14 | OKt.14 | Dez.14 | Jän.15 | Feb.15 | Mär.15 | Apr.15 | Mai.15 | Jun.15 | CL.IDC | Aug. 10 | Oct 15 | Nov 15 | Dez.15 | Jän.16 | Feb.16 | Mär.16 | Apr.16 | Mai.16 | Jun.16 | Jul.16 | Aug.16 | Sep.16 | Nov.16 | Dez 16  | 3      |
| WP 1 | Specification [WP leader: PAY]                                     |        |        |        |        |        |        |        |        |        | M1.    | 1      |        |        |        |        |        |         |        |        |        | Т      |        |        |        |        |        |        | $\Box$ | $\Box$ | Т      | Т       | 7      |
| WP 2 | Overall Conceptual Design [WP leader: LTS]                         |        |        |        |        |        |        |        |        |        |        |        | M2.1   |        |        |        |        |         |        |        |        |        |        |        |        |        |        |        |        |        | $\Box$ | I       | $\Box$ |
| WP 3 | Feasibility gate of the Cryogenic Module [WP leader: LTS]          |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | М       | 3.1 M  | 1.2    |        |        |        |        |        |        |        |        |        |        |        | $\perp$ |        |
| WP 4 | Feasibility gate of the Sensors Module [WP leader: OEAW-SMI]       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         | M      | 1.1    |        |        |        |        |        |        |        |        |        |        |        | $\perp$ | $\Box$ |
| WP 5 | Development gate of the Cryogenic Module [WP leader: LTS]          |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        | M5.1   | M5.2   |        |        |        |        |        | $\perp$ | $\Box$ |
| WP 6 | Development gate of the Sensors Module [WP leader: OEAW-SMI]       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |        |        | M6.    | 1      |        |        |        | M6.2   |        |        |        |        |        | $\perp$ | $\Box$ |
| WP 7 | Integration, Applications and System Verification [WP leader: PAY] |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        | M7.1   | M7.2 N | A7.3   |        | Т       |        |
| WP 8 | Dissemination and Exploitation [WP leader: OEAW-SMI]               |        |        |        |        |        |        |        |        |        |        |        |        |        |        | M      | 18.2   |         |        | M      | .1     |        |        |        |        | M8.3   |        |        |        |        |        |         |        |
| WP 9 | Project Management and Documentation [WP leader: PAY]              | Repl   |        |        |        |        |        | M9.1   |        |        |        |        |        |        |        |        |        |         |        |        |        | Τ      |        | M9.2   | 2      |        |        | M9.3   | M9.4   |        |        |         | П      |

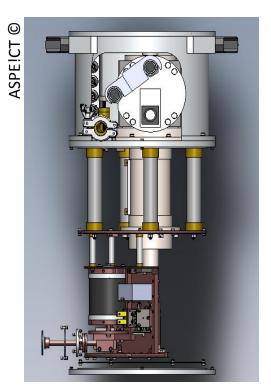


| Appl | Application submitted                                          |   |
|------|----------------------------------------------------------------|---|
| M1.1 | Specification identified and released                          |   |
| M2.1 | Overall conceptual design defined                              |   |
| M3.1 | Technical feasibility of the cryogenic module proved           |   |
| M3.2 | Technical feasibility of the thermal-switch element understood |   |
| M4.1 | Technical feasibility of the sensor module proved              |   |
| M5.1 | Combined 4K platform and J-T module successfully tested        |   |
| M5.2 | Combined 4K platform and ADR module successfully tested        |   |
| M6.1 | All material acquired and parts produced                       |   |
| M6.2 | Detector modules and DAQ developed                             |   |
| M7.1 | Detector and DAQ integrated and tested in ASPE!CT              |   |
| M7.2 | Performances of the ASPE!CT cooling device identified          |   |
| M7.3 | Integration and Verification plan finished                     |   |
| M8.1 | First patent and/or trademark registration submitted           |   |
| M8.2 | First scientific publication submitted                         |   |
| M8.3 | First product demonstration at an industrial exhibition        |   |
| M9.1 | Consortium agreement signed by all partners                    |   |
| M9.2 | Risk analysis finished                                         |   |
| M9.3 | Access Rights document updated and released                    |   |
| M9.4 | Main Technical Documentation finished                          | ] |

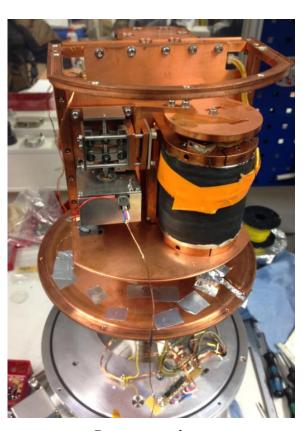







# From idea to the first prototype...






Feasibility



Development

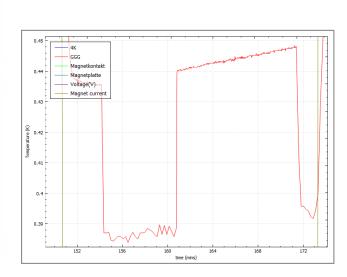


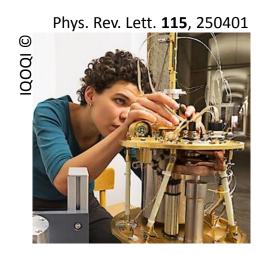
Prototyping










- Orientation-free and energy efficient sub-kelvin (<500mK) cooling device demonstrated in a working prototype (ALL)
- Design and manufacturing of a superconducting magnet and heat switch (LTS, SMI)
- BOM (Bill of Material), machined components and supply chain released (PAY)
- ASPE!CT trademark registration and ongoing IPR (LTS)
- Acquiring vacuum technology know-how (PAY)
- Scientific outcome published in a peer-reviewed Journal (SMI)
- High-visibility in international conferences, trade show and research institutions (ALL)
- Start-up of the company Kaon GmbH, CEO and Owner Kevin Phelan (ex SMI)















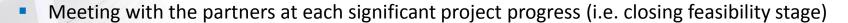




# Must not and don't miss: Application

- Don't promise the moon! The project must have risks but still it must be achievable
- Agreed and Signed Consortium Agreement already at a very early stage (especially on IPR)
- Project costs table must be unambiguous (minimise "other costs" or subcontractors)
- Please, invest enough time in the project plan (i.e. milestones, risk mitigations, resources)
- WPs, Tasks and Milestones must have one responsible (also for common activities)
- Don't sum up the milestones at the project end (but well-distribute them over the time)
- Intended commercial targets must be clear (i.e. product cost, selling price, time-to-market)
- Please, update the IPR status on the subject (you may get an expert having IP on it)










# Must not and don't miss: Implementation

- The Coordinator acts according with the CA on behalf and in the interest of the consortium
- Communicate to FFG/Eurostars™ project baseline deviations (i.e. schedule, costs, workload)
- Milestones which are not achievable must be communicate (Eurostars™ Progress Reports)



- Update on a regular basis the IPR, technical and risks documentation
- Generate clear "time-sheets" record with signature and date for each involved employee
- Generate BEFORE the project end an agreed "Exploitation of the project results document"
- Eurostars™ may agree a "cost neutral project prolongation" (but less than 36 months)





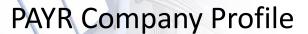




# Must not and don't miss: Post activity

- Eurostars™ final report about 6 months after the official project end
- Who is the owner of the prototype(s)?
- Who is doing what? Is that still in agreement with the exploitation document?
- Are the IPR issues well regulated? Who is supporting the patents costs?




- Who is investing in the standard regulation issues (i.e. CE-Mark)
- Who is investing in the market introduction phase?
- When will be the product introduced to the market?
- Are the market and commercialization channels ready?













- Middle-size R&D performing SME
- √ 100% Private Company (Ing. Peter Paul Payr, CEO and Owner).
- ✓ Located in Austria (Carinthia, Graz and Salzburg)
- Consolidated High-Technology company (founded in 1998)
- ✓ Engineering services and manufacturing (Payr Production GmbH) in the fields of:
  - Aeronautic, Automotive, Semiconductor and Renewable energy
  - Plant Engineering, Automation and Precision Mechanics



- Medical Technology, Radiation Protection (ASCAS acquired know-how)
- Cryogenic Technology (ASPE!CT acquired know-how)
- Vacuum and Pressurized Systems (ASPE!CT acquired know-how)
- Supporting R&D project application & implementation











# PAYR GROUP Headquarter Patergassen, Carinthia

#### Local contact person in:

- Salzburg Area
- Graz Area

- Office area up to 800m²
- Manufacturing area 600m<sup>2</sup>
- ca. 40 Employees
  - ca. 20 Payr Engineering GmbH
  - ca. 20 Payr Production GmbH





















!!! Danke !!!

!!! Thanks !!!

!!! Grazie !!!

LÖSUNG DURCH TECHNIK