THEME 1.- EARTH OBSERVATION

Ref. Number: G511-021GR Budget: 200 K€

Activity Title: Preparation of an advanced standalone error prediction module for SAR interferometry (PEPSI).

Objectives: The objective of the work is twofold. The primary objective is to develop an advanced stand-alone error prediction module for SAR interferometry, based on data-dependant statistical models for the major error sources, namely atmospheric propagation and phase unwrapping.

Secondly, since an interferometric processor capable of interfacing with an error prediction module was delivered to ESA during a previous project, support for a selection of recently available and previously unsupported SAR sensors within this processor is envisaged.

Concerning the standalone error prediction module, the main tasks of the activity are:

1. Error prediction framework mathematical formulation and implementation. The InSAR processing algorithm assumptions should allow application of the framework to the products of several available and commonly used InSAR software packages.

2. Development of a statistical model for atmospheric propagation errors, capable of using data from numerical weather prediction models and/or other satellite sensors (e.g. imaging spectrometers).

3. Development of a statistical model for phase unwrapping errors. The model should be scene and processor dependent, i.e. the predicted error should be sensitive to the unwrapping difficulties of the scene and to the complexity of the unwrapping algorithm used. Possibly, the magnitude of multiple-cycle errors should be estimated, using external data if needed (e.g. a coarse DEM for height measurement, or speckle/feature-tracked range offsets for displacement).

Concerning the support of recent and previously unsupported sensors within the interferometric processor, it is proposed to choose three of these from the following list, upon project start and in agreement with the Technical Officer: Radarsat-1, Radarsat-2, ALOS-PALSAR, TerraSAR-X, COSMO-SkyMed.

Support should be provided for the Single Look Complex products, in slant range geometry.

Description: Within the current state of the art, interest for the proposal's primary activity is elicited by the fact that currently several InSAR processors are available to the scientific community, but the derived height and displacement products are generally not accompanied by a quality measure (error standard deviation) which accounts for the major error sources, i.e. atmospheric propagation and phase unwrapping. The InSAR scientific community would therefore benefit from the availability of a stand-alone error prediction module, capable of keeping these error sources into account. An interferometric processor and a simpler Error Prediction Module (EPM) were delivered by the applicants during a previous GSTP funded project "Preparation of Interferometric SAR processor (COISP)". The EPM could be operated within the interferometric processor as well as a standalone program.

The secondary objective of this proposal is aimed at making the interferometric processor delivered in the previous project, as well as the advanced EPM which can be operated within it, useful to a broader range of users, by including support for recently available sensors.

Compared to the activity proposed above, the error prediction framework
ANNEX 2: DESCRIPTIONS ACTIVITIES GSTP-5 - ELEMENT 1. Preliminary Selection

developed in the previous project requires broadening, in order to be compatible with a larger range of InSAR processing algorithms. Furthermore the data-dependence degree of the models must be increased significantly, particularly concerning atmospheric error prediction. Concerning phase unwrapping, the main open challenge lies in developing and testing an algorithm capable of predicting the likelihood of multiple-cycle errors.

Deliverables:
1. Advanced standalone error prediction software for InSAR.
2. Support for a minimum of three new sensors (to be chosen with the Technical Officer at project start) within a previously developed InSAR processing software.

Application: Applicable to the "Architectures and standards" EO User Segment "Mission". 2010

Current TRL: Target TRL: Harmonization Duration: 24 Months

Ref ESTER: T-7674

<table>
<thead>
<tr>
<th>Ref. Number: G511-022GR</th>
<th>Budget: 400 K€</th>
</tr>
</thead>
</table>

Activity Title: Automated Service Builder for Semantic Service Oriented Architectures (ASB)

Objectives:
The objective is, within Service Oriented Architectures (SOA), to assess the feasibility and to develop the principles (foundations) of a technology allowing a generic system to answer new user needs by taking the existing services and automatically composing them together in order to deliver the expected, new service. The activity is divided into two threads:
* a study thread, that aims at defining the principles allowing such automated service builder to work (design task);
* a demonstration thread, that aims at implementing a technology demonstrator, for confirming feasibility and for identifying needs for new enabling standards.

Description: Nowadays, there is a trend for exposing services via the principle of Service Oriented Architecture. The composition of these services to build new processing chains (workflows) capable to meet user needs remains an expert's task. The idea is to take immediate advantage of new services that are created/added and hence shorten the time before the user needs can be met, to better exploit existing infrastructures and to foster new synergies. Such technology would allow developers to concentrate on the implementation of SOA building blocks services that afterwards can be freely combined, even in ways not anticipated, to meet user needs not known in advance. The technology would therefore provide a layer of "problem solving" on top of the supporting infrastructure, and can be seen as the exploitation of Knowledge Engineering techniques, Semantic and Ontological techniques and Artificial Intelligence techniques (problem solving) on top of SOA functional blocks.

Status of the art includes:
- Various research and prototype developments of Semantic Service Oriented Architecture (SSOA) applications.
- Emerging standards for semantically enabled services.

Deliverables: Feasibility study report, Software prototype, Initial recommendations for enabling standards.

Application: Applicable to the "Knowledge and semantics" EO User Segment "Mission". All services, related to any EO mission and also to non-EO data, published according to the supported standards will benefit from the results of this activity. End 2010

Current TRL: Target TRL: Harmonization Duration: 18 Months

Ref ESTER: T-551
ANNEX 2: DESCRIPTIONS ACTIVITIES GSTP-5 - ELEMENT 1. Preliminary Selection

<table>
<thead>
<tr>
<th>Ref. Number:</th>
<th>G511-023GR</th>
<th>Activity Title:</th>
<th>Automatic, Semantic Image Information Mining from Time Series of VHR images (ASIM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
<td>200 K€</td>
<td>Objectives:</td>
<td>The objective of this activity is to extend the approach of the Image Information Mining - Time Series (IIM-TS) TRP project to the automatic extraction of information from Very High Resolution (VHR) images through the implementation of an automatic land cover change / land use classification system based on the application of the MEEO SOIL MAPPER® software to VHR satellite data. It implies three main steps:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- implementation within the Knowledge-centred Earth Observation (KEO: TRP project) environment of a Feature Extraction Processor (FEP) based on the SOIL MAPPER® VHR software package for image pre-classification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- application of this FEP to a time series of VHR satellite images to create and validate the preliminary classification maps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- development, implementation and test of a fully automatic multi-temporal land cover change / land use classification system based on time series of preliminary classification maps.</td>
</tr>
<tr>
<td>Description:</td>
<td></td>
<td></td>
<td>The final system, in a prototype version, will be linked to the time series visualisation tool developed in the framework of the IIM-TS project.</td>
</tr>
<tr>
<td>Deliverables:</td>
<td></td>
<td></td>
<td>KEO FEP Module, Documentation, Prototype</td>
</tr>
<tr>
<td>Application:</td>
<td></td>
<td></td>
<td>Applicable to the "Information extraction and data fusion" EO User Segment "Mission". Specific optical VHR EO missions will benefit from the results. Second half 2009</td>
</tr>
<tr>
<td>Current TRL:</td>
<td></td>
<td></td>
<td>9 Months</td>
</tr>
</tbody>
</table>

| Ref ESTER: | T-7707 | Harmonization Dossier: | |

<table>
<thead>
<tr>
<th>Ref. Number:</th>
<th>G511-024GR</th>
<th>Activity Title:</th>
<th>Decision Support and Real Time EO Data Management (DREAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget:</td>
<td>2,500 K€</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objectives:	The proposed activity is based on the adaptation and use of a registered software named SOIL MAPPER® that allows overcoming both time constraints and subjective interpretation. Its implementation within KEO will make available an efficient component capable of extending the results that can be expected from the IIM-TS project.
Description:	Land cover change / land use analyses are normally performed on the basis of semi-automatic processing systems that involve subjective interpretation by a human operator. The application of human-based technologies to large amount of VHR data is extremely time consuming and provides often subjective results. The proposed activity is based on the adaptation and use of a registered software named SOIL MAPPER® that allows overcoming both time constraints and subjective interpretation. Its implementation within KEO will make available an efficient component capable of extending the results that can be expected from the IIM-TS project.
Deliverables:	KEO FEP Module, Documentation, Prototype
Application:	Applicable to the "Information extraction and data fusion" EO User Segment "Mission". Specific optical VHR EO missions will benefit from the results. Second half 2009
Current TRL:	9 Months

| Ref ESTER: | T-7707 | Harmonization Dossier: | |

Note: The documentation includes information on the objectives, description, deliverables, and application of the proposed activities. The activities address the need for efficient and automated solutions to land cover change and land use classification, leveraging advanced software tools such as SOIL MAPPER®.
ANNEX 2: DESCRIPTIONS ACTIVITIES GSTP-5 - ELEMENT 1. Preliminary Selection

Objectives: The recent programmatic efforts in EO have addressed the use of EO data for the delivery of services with particular emphasis for global phenomena. This has been an opportunity for the evolution of standards and technologies needed to fill the gaps in data identification, satellite tasking and to a certain extent, as well data delivery. The progress made outlines as well some gaps existing in more closely addressing the requirements of specific users needing to rely on multiple data sources and having to take decisions in short timeframe. This project shall address all the issues which arise when decision support systems need to exploit information based on EO data which may be acquired and made available within a pre-defined time window. This includes: analysis of available data in the archives, feasibility analysis of the satellite acquisition in the area(s) of interest, identification of the "best" patchwork of acquisitions and set up of contingencies. The project shall address scenarios including the dynamic transfer of EO data towards the decision support system. The overall architecture of the decision support system shall be based on two conflicting requirements:
- an open service oriented architecture
- an advanced IT secure architecture

Description: The requirements for the DREAM project shall be defined together with EUSC which is the owner of business cases very similar to the one described. The DREAM project should be able to exploit the know how acquired at ESA and European industry on the management of complex workflows in order to support the automated execution of complex tasks. The DREAM project should be able to capitalise on the work done in defining standards for feasibility analysis of sensor tasking within the Heterogeneous Missions Accessibility project and on the Service Support Environment developed by Spacebel in previous GSTP activities.

Deliverables: The DREAM prototype shall deliver a beta version of the decision support system, after at least six months of persistent demonstration and test.

Application: Applicable to the "Architectures and standards" EO User Segment "Mission".

Current TRL: Target TRL: Duration: 24 Months
Ref ESTER: T-551 Harmonization Dossier:

Ref. Number: G511-025GR Budget: 2,000 K€
Activity Title: The EO Image Librarian: EO image and geoinformation intelligence search engine (EOLib)

Objectives: In support to EO image and geoinformation intelligence, the EO Image Librarian objective is to identify a path towards a next generation EO search engine and value adding tools capable to create "live" products tuned to user needs. The areas to be addressed include:
- Image content interpretation (also through multi-resolution clustering on N-dimensional spaces of user selectable features), categorisation, semi-automatic annotation with geo-referencing (supported by other data sources) and semantic representation
- Combined use of low, medium and high resolution images
- Natural language user's inquiry understanding, also through refinement dialogues
- Interactive, semantic, user friendly and domain specific searches for content in distributed archives of EO images and time series
- Identification, extraction, categorisation and semantic representation of related geospatial information from distributed GIS / maps repositories, Internet, photos, specific documentation, etc.
- Dynamic associations of both information types through ontologies
- Suggestion of most appropriate products and alternatives also through advanced
ANNEX 2: DESCRIPTIONS ACTIVITIES GSTP-5 - ELEMENT 1. Preliminary Selection

visualisations
- Dynamic creation of specific products tuned to user needs

The tasks to be performed in order to reach the objective while addressing the above areas include
- Identify relevant use cases
- Analyse similar implementations in EO and other domains
- Study existent and identify missing methods / technologies
- Define an architecture capable to combine the selected methods / technologies
- Implement a prototype, by combining existing methods / technologies and developing the missing ones, capable to provide the key functions
- Assess the prototype with key users and verify performances
- Define the steps and the additional developments needed to implement an operational systems

Description:
In order to speed-up development, EOLib will be based on the outputs of the Knowledge-based Information Mining (KIM) and Knowledge-centred Earth Observation (KEO) TRP projects. The correctness of this approach is supported by the new solutions for better products under formulation at DLR thanks to the KIM / KEO instance (under operational validation) interfaced with the TerraSAR-X archive. The EO Image Librarian will be a new system and flavour of tools that in continuation of KIM and KEO will give solutions to automating the mining (extraction) of information from EO archives that can lead to knowledge discovery and the creation of actionable intelligence (exploitation). The EO Image Librarian is more than just an extension of data mining principles to images. It will extract information and aggregate it from of multi-mission EO images and other non-image sources, e.g existing maps, GIS, in situ information and measurements, text description, Internet resources, etc. Thus, new algorithms and tools will extract relevant features from multiple data sources, structure this information, identify objects and automatically record and analyse their interrelationships to learn their behaviour so as to be able to detect relevant information. The methods are integrated in systems, which can be operated using intelligent interfaces able to correlate the information content of the images with the relevant goals of the application.

The users will have at their disposition tools for the definition of specific goals using semantics. The problem of the large dimensionality, which for computationally efficient data analysis is of primary concern, is solved using pre-extracted representative features instead of raw images.

The goal is to have machines more closely interacting at human conceptual levels (i.e.: automate the human remote sensing analyst). Unlike the respective hard computing methods, soft computing may cope with problems that deal with imprecision, uncertainty and learning, and are better candidates to construct systems and models which are simple, applicable, user-friendly, and fast.

Deliverables: Updates on relevant implementations and methods / technologies, Use cases and architecture, New outputs, Prototype, Prototype assessment results, Suggestions for future steps

Application: Applicable to the "Information extraction and data fusion" and "Knowledge and semantics" EO User Segment "Mission", Mid 2011

Current TRL: Target TRL: Duration: 24 Months

Ref ESTER: T-539, T-1569, T-572 **Harmonization**

Dossier:

Ref. Number: G511-026GR **Budget:** 2,000 K€

Activity Title: European Service Support Environment Enhancements (ESE)

Objectives: Previous GSTP projetec lead to the development of an environment for orchestrating EO and GIS services which has proven to be a breakthrough tool
both for developers and the Agency alike which is exploiting it as Service Support Environment (SSE). However the evolution of technologies requires the design and prototyping of a next generation of such environment in order to address several technological and organisational challenges:

Among the topics to be addressed at organisational level there is the requirement to support:

- Service Level Agreement (SLA) management issues and challenges in a Web Services environment by an automatic support to SLA specification, creation and monitoring on a distributed environment.
- simplify and or automate the dynamic design and customisation of Graphical User Interfaces addressing customer or project specific visualisation needs including 3D techniques, embedding of portlets in thematic portals, and seamless integration with collaborative environments.
- dynamically discover and support user and data acces policies defined by service providers and data owners.

On the technology side it is as well necessary to address a combination of consolidating technologies on the configuration and performance management of high end performant systems (like hot redundancy) as well as an evolution of more basic architectural elements like the version 2 of the Service Oriented Architecture

Description:

Deliverables:
1. Demonstration systems
2. Target system specifications and implementation documentation
3. Report and recommendations

Application:
Applicable to the "Architectures and standards" EO User Segment "Mission". Mid 2011

Current TRL:
Target TRL: 30
Duration: 30 Months

Ref ESTER:
T-551

Activity Title:
New Sensors Study for Soil Mapper Application and SSE Integration (NSS)

Objectives:
The objective of the activity is to analyse and test how DMC sensors can profit from the automated SOIL MAPPER® pre-classifier and the Service Support Environment (SSE).

Description:
The tasks to be performed include:
- Proof of concept of accuracy and efficacy, progressing to full integration of DMC data models and characteristics into the SOIL MAPPER® fully automated pre-classification tool, for current and future DMC missions.
- Analysis of outputs and services possible with SOIL MAPPER®.
- Study and documentation of interfaces required for integration into SSE along the lines of the Heterogeneous Mission Accessibility (HMA) effort.
- Test services implementation.

Automatic classification tools are not common and are dificult to realise effectively. DMC data is suitable for the purpose (as proven by similar implementations of the classification tool).

In the context of ongoing developments of ESA interfaces to the Disaster Monitoring Constellation, it is prudent to ensure the data is supported.
Annex 2: Descriptions Activities GSTP-5 - Element 1. Preliminary Selection

Deliverables: Data package inputs to and outputs from the SOIL MAPPER® tool, available for public assessment (data package including source DMC imagery, related product manual and SOIL MAPPER® method description). Test services published in SSE. Specifications for SSE environment integration for future HMA interface development work. TRL6 by 2010

Application: Applicable to the "Information extraction and data fusion" EO User Segment "Mission". Applicable in particular to DMC sensors and services as pre-emptive developments to complement the HMA integration activities. End 2009

Current TRL: 12 Months
Target TRL: 6
Duration: 12 Months

Ref ESTER: T-551, T-7707
Ref. Number: G511-028GF
Budget: 500 K€

Reference Number: G511-028GF
Budget: 500 K€

Activity Title: Open-standard Online Observation Service (O3S)
Objectives: A family of specifications of the Open Geospatial Consortium (OGC) currently under evolution is addressing the access, visualisation, and exploitation of observations and EO data. These specifications shall be implemented in the form of O3S demonstration services and shall be verified and validated in an international endeavour. An "in-network processing" solution combined with intelligent caching shall be furthermore demonstrated in O3S for the handling of data resources and processing capabilities which are distributed in the Internet. Mechanisms will be implemented where small algorithms can be transferred and applied to large volumes of data in a way saving bandwiths and optimizing resource utilization. An active participation in the OGC discussion and specification processes shall be part of the O3S activity.

The O3S technical solutions and implementations will be communicated and cross-checked with the GIGAS Coordination and Support Activity in the EU 7th Framework Programme (GIGAS stands for "GEOSS, INSPIRE, GMES an Action in Support").

Satellite archives such as ESA's Envisat MERIS repositories or Member State archives (such as Pléiades to which Austria holds defined mission access rights) are candidates for which the services shall be demonstrated in the project. The project is designed in response to emerging requirements for (re-)opening Earth Observation satellite data archives and for applying (re-)processing to the (historic series of) data to generate global change parameters (e.g. the so called "essential climate variables") and to carry out mapping and topographic activities with the goal "to understand better, in order to react better" in the future management of our environment.

The Austrian space industry and ARC in particular have, from the early days on, been actively involved in OGC standards setting. The O3S project described here shall further ramp-up Austrian contributions to OGC standardization by performing well-selected reference implementations of Web service interoperability standards for online (satellite) data access and Web mapping.

The primary OGC standard to be implemented in O3S is the Web Coverage Service (WCS) (ref. 1). Currently several extensions of the WCS are discussed within OGC. These extensions include a ProcessCoverage operation also called Web Coverage Processing Service (WCPS) (2), transaction operations to ingest data to the WCS (3), a JPEG 2000 and the related streaming protocol JPIP coverage format extension (4) (5), an asynchronous GetCoverage operation (6), etc.

References to specifications are:
(1) Web Coverage Service (WCS) Implementation Standard, Version 1.1.2 from...
ANNEX 2: DESCRIPTIONS ACTIVITIES GSTP-5 - ELEMENT 1. Preliminary Selection

2008-03-19, OGC Document: 07-067r5
(2) Web Coverage Processing (WCPS) Implementation Standard - proposed draft
 Version 1.0.0 from 2008-04-29, OGC Document: 08-068
(3) Web Coverage Service (WCS) — Transaction operation extension, Version
 1.1.3 from 2008-04-21, OGC Document: 07-068r2
(4) WCS 1.1 Application Profile for JPEG 2000 Coverage Encoding, 1.0 from
(5) WCS 1.1 Application Profile for JPIP Coverage Encoding, 1.0 from
 2007-11-28, OGC Document: 07-146
(6) https://portal.opengeospatial.org/twiki/bin/view/WCSrwg/AsynchronousGetCovera
gResponses

There has been no related previous TRP/GSTP activity.

Description:

Deliverables: Demonstration systems, Target system specifications and implementation
documentation, Report and recommendations

Application: Applicable to the "Architectures and standards" and "Information extraction and
data fusion" EO User Segment "Missions". End 2010.

Current TRL: Target TRL: Duration: 18 Months

Ref ESTER: T-539 Harmonization

Ref. Number: G511-029GF Budget: 320 K€

Activity Title: Ontology Based EO Search (OBEOS)

Objectives: The high number of Earth Observation missions is producing a tremendous
amount of sensor specific images archived in ESA infrastructure (HARM) that
need a long term strategy for archiving and ease of use. The project aims to
define a semantic concept study and to implement an EO Ontology based Service
Oriented framework prototype, able to take into account specific questions meant
to support the evolution of complex data sets into user useful specific information
(i.e., which geographical area across Europe has an ozone level above a given
threshold for more than a week in a row and over a period of 10 years? or which
SAR data set is available to perform slow-moving landslides interferometry
assessment?). The ontologies will be used in order to created models upon which
intelligent queries can be applied. The prototype

Description: 1. Ontology for EO Concept Study

A concept study will be done for the definition of semantics based on the
production of simple but innovative metadata files which contains statistical
information. The creation of strategy and prototype will focus upon SCIAMACHY
and GOME sensors for the air quality monitoring and upon Envisat and ERS radar
data for landslides monitoring.

The study will provide an analysis of the existing data in order to provide an
ontology based solution that will define:
 • the approach of the ontological model (single, multi, hybrid).
 • the type (domain, hierarchical, etc) of the ontologies that will be used,
 • the methodology that will be followed for the ontologies development and
 • the language that will be used in order to model the development.

The second milestone of the study is to create a pool of ontologies that can be
used for the definition of the metadata. The ontologies will be used as semantic
ANNEX 2: DESCRIPTIONS ACTIVITIES GSTD-5 - ELEMENT 1. Preliminary Selection

wrappers upon which the SOA solution will be based.

2. EO-Ontology System Design

and

3. EO-Ontology based Service Oriented framework prototype implementation:
The Ontology based Service Oriented framework will enable the definition and
development of software instances of the produced ontologies (as web services).
This set of web services will act as an application server to higher levels. Thus the
proposed software solutions will:

1. Use ontologies and semantics to define the specifications of the services

2. Associate the semantic definition of the concepts to the repositories using
intermediate ontologies.

3. Use a set of design time (Concepts and Services designer) and run time
components (Administration Server, Publication Server) to develop integration
components
The two tasks will design and implement this prototype.

4. User engagement, Dissemination and promotion
The main objectives of Task 4 are to assess the user acceptance of the products
and services, to further analyse the servicing capacity with a sustainability
analysis and to promote the project achievements in the user community. Part of
the activity will be a prototype demonstration workshop.

Deliverables: EO-Ontology Concept Study, EO-Ontology Concept System Design, EO-Ontology
based Service Oriented framework prototype, Demonstration Workshop and
dissemination activities outcomes, Managerial documentation (according to
ECSS)

Application: Applicable to the "Knowledge and semantics" EO User Segment "Mission". In
principle the proposed technology is applicable to all kinds of EO data, in
particular for EO data with a high temporal frequency. However, the main goal is
to enable a conceptualized search access for the full exploitation of ESA EO
missions archives. End 2010

Current TRL: Target TRL: Duration: 14 Months
Ref ESTER: T-539 Harmonization
Dossier:

Ref. Number: G511-030GR Activity Title: Rapid Response Support Server (RARE)
Objectives: The objective of the Rapid Response Support Server is to allow the rapid
integration, at the semantic level, of relevant EO products with actual ground data
from the affected area and related background knowledge for a specific incident.

Description: The tasks will include design and implementation of features permitting:

1. Semantic integration of EO data and ground data as well as background
information (infrastructure data, civil engineering data, power and gas lines etc.).
Such integration can be rapidly done only by providing beforehand ontologies for
the EO data, as well as early designs for ontologies relevant to the application
domain (for example to different disaster, humanitarian, environment, crisis or
security incidents).

2. Advanced queries (including natural language queries), inferencing, prediction
and data presentation using the data semantics.

3. Data presentation and delivery in various formats, including formats suited for
hand held applications.
It should be possible to quickly set-up the Rapid Response Support Server in
cases of natural disaster, humanitarian crisis or security crisis, basing it on a
semantically rich description of the event to be supported. This semantic
information linked to the specific application domain will make data utilisation
ANNEX 2: DESCRIPTIONS ACTIVITIES GSTP-5 - ELEMENT 1. Preliminary Selection

The project can benefit from experience gained other activities like the SATOPI GSTP project.

Relevant information sources include INSCRIT, INSPIRE, OASIS

Deliverables: Software prototype, Technical Report

Application: Applicable to the "Knowledge and semantics" EO User Segment "Mission". Applications concerned with disaster / crisis handling might benefit from the results. End 2010

Current TRL: Target TRL: Duration: 24 Months

Ref ESTER: T-553 Dossier: Harmonization