BE2020
BIOENERGY2020+ GmbH
Programme: COMET – Competence Centers for Excellent Technologies
Programme line: K1-Centres
COMET subproject, duration and type of project:
The virtual biomass fired boiler, multi-firm (01.04.2012 – 31.03.2015)
The virtual biomass fired boiler

In several years of research work, BIOENERGY 2020+ has developed a CFD-based deposition and fine particulate formation model for biomass-fired boilers. The application of this model makes an important contribution to a better understanding and, therefore, a reduction of the problems associated with fine particulates in the development of new boiler technologies. Moreover, the simulations contribute to a development of plants with reduced ash deposits and corrosion of the heat exchanger tube bundles, and, therefore, with enhanced plant efficiencies and availabilities.

The model
Avoiding the formation of solid ash deposits and high temperature corrosion in biomass fired boilers is of great importance in terms of achieving high boilers efficiencies and availabilities. Reducing fine particulate emissions is also becoming increasingly important, on the one hand due to increasingly stricter emission limits and on the other hand due to the increasing demand for new ash-rich fuels such as short-rotation coppice, Miscanthus and agricultural residues.

In several years of research work, BIOENERGY 2020+ has therefore developed a CFD model for the simulation of the most relevant ash related problems in biomass fired boilers (including the heat exchanger tube bundles):
• Fine particle formation
• Ash deposit formation and reduction of thermal efficiency
• Corrosion of heat exchanger tube bundles and reduction of plant availability
 o Empirical corrosion model which estimates the local corrosion potential based on a CFD simulation of flow and heat transfer
 o Detailed corrosion model considering the underlying processes (e.g. Chlorine corrosion and oxidation).

With this model, a leading international position was achieved in the CFD simulation of boiler plants: The model is characterised by its high degree of flexibility in terms of the fuels used, with a highly detailed description of the ash chemistry and the underlying processes.

Selected results

Fine particle formation simulation

The results are illustrated by the following figure, which shows the left the fine particulate concentrations (mg/Nm³ tr, 13% vol. O₂) in a 70 kilowatt pellet boiler.

For the purpose of checking the model, the simulation results were compared with measurements. It was found that the predicted fine particulate emissions are in good agreement with the measurements (simulation: 9.92 mg/Nm³; measurement: 7.65 mg/Nm³).

Simulation of the corrosion potential

The modelling results are illustrated by the following figure, which shows the calculated corrosion potential of the first two superheater bundles [mm/1000h] of a 42 MW biomass fired steam boiler.

Impact and effects

The use of the model under development as a process analysis tool makes an important contribution to a better understanding and, therefore, a reduction of the problems associated with fine particulates in the development

Further information on COMET – Competence Centers for Excellent Technologies: www.ffg.at/comet

This success story was provided by the consortium leader/centre management for the purpose of being published on
Simulations may lead to a development of new boiler technologies. Moreover, the simulations may lead to a development of plants with enhanced plant efficiencies (reduced deposit layers) and availabilities (blocking by ash deposits and corrosion damages).

Contact and information
K1-Zentrum BE2020
BIOENERGY2020+ GmbH
Inffeldgasse 21 b, 8010 Graz
T ++43 316 873 9201
E office@bioenergy2020.eu www.bioenergy2020.eu

Project coordinator
Dr. Robert Scharler

Project partners

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical University Graz</td>
<td>Austria</td>
</tr>
<tr>
<td>University of Augsburg</td>
<td>Germany</td>
</tr>
<tr>
<td>KWB Kraft und Wärme aus Biomasse GmbH</td>
<td>Austria</td>
</tr>
<tr>
<td>GKS - Gemeinschaftskraftwerk Schweinfurt GmbH</td>
<td>Germany</td>
</tr>
<tr>
<td>Viessmann Werke GmbH & Co. KG (früher: MAWERA Holzfeuerungsanlagen GmbH)</td>
<td>Germany</td>
</tr>
<tr>
<td>BIOS BIOENERGIESYSTEME GmbH</td>
<td>Austria</td>
</tr>
<tr>
<td>Josef Bertsch Gesellschaft m.b.H. & Co. KG</td>
<td>Austria</td>
</tr>
<tr>
<td>Polytechnik Luft- und Feuerungstechnik GmbH</td>
<td>Austria</td>
</tr>
</tbody>
</table>