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About Me

 09/2018 TU Graz, Austria
– BMVIT endowed chair for Data Management

– Data management for data science
(ML systems internals, data systems integration, deployment)

 2012-2018 IBM Research – Almaden, USA
– Declarative large-scale machine learning

– Optimizer and runtime of Apache SystemML

 2011 PhD TU Dresden, Germany
– Cost-based optimization of integration flows

– Systems support for time series forecasting

– In-memory indexing and query processing
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Example ML Applications

 Transportation / Space
– Lemon car detection and reacquisition (classification, sequence mining)

– Airport passenger flows from WiFi data (time series forecasting)

– Satellite senor analytics (regression and correlation)

 Finance
– Water cost index based on various influencing factors (regression)

– Insurance claim cost per customer (model/feature selection, regression)

– Financial analysts survey correlation (bivariate stats w/ new tests)

 Health Care
– Breast cancer cell grow from histopathology images (classification)

– Glucose trends and warnings (clustering, classification)

– Emergency room diagnosis and patient similarity (classification, clustering)

– Patient survival analysis and prediction (Cox regression, Kaplan-Meier) 



Example ML Applications, cont.

 Other Domains
– Machine data: errors and correlation (bivariate stats, sequence mining)

– Smart grid: energy demand/RES supply and weather models (forecasting)

– Visualization: dimensionality reduction into 2D (auto encoder)

 Information Extraction

– NLP contract sentences  rights/obligations (classification, error analysis)

– PDF table recognition and extraction (NMF clustering, custom processing)

– OCR: optical character recognition (preprocessing, classification)

 Algorithm Research
– User/product recommendations via various forms of NMF

– Localized, supervised metric learning (dim reduction and classification)

– Learning word embeddings via orthogonalized skip-gram

– Learning first-order rules for explainable classification

– (Dozens of state-of-the-art algorithms from the literature)



Common Large-Scale ML Challenges 

 #1 Custom ML Algorithms
– Huge diversity of existing ML algorithms

– Cutting- / bleeding-edge algorithms 

– Domain-specific extensions 
(e.g., initializations, loss functions)
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Common Large-Scale ML Challenges 

 #1 Custom ML Algorithms
– Huge diversity of existing ML algorithms

– Cutting- / bleeding-edge algorithms 

– Domain-specific extensions 
(e.g., initializations, loss functions)

 #2 Changing Environment
– Sample vs large-scale datasets (data size)

– Dense/sparse, #features (data characteristics)

– Single-node vs cluster (cluster characteristics)

 #3 Integration and Deployment
– Data preparation and feature engineering

– Batch training/scoring

– Low-latency scoring (streaming)

– Scale-up, scale-out, GPUs (hardware)
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SystemML: Overview and Architecture
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An Example: 
Linear Regression Conjugate Gradient

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001; 
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y); 
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt) 
10: {
11: q = (t(X) %*% (X %*% p))+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1; 
19: }
20: write(w, $4, format="text");
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Note:
#1 Data Independence
#2 Implementation-
Agnostic Operations

 “Separation 
of Concerns” 



High-Level SystemML Architecture

Hadoop or Spark Cluster 
(scale-out)

In-Memory Single Node 
(scale-up)

Runtime

Compiler

Language

DML/PyDML Scripts DML  (Declarative Machine 
Learning Language)

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,
Spark MLContext, Spark ML, 

(Scala, Python, Java DSLs) 

Library of 20+ 
scalable algorithms

In-Progress:

GPU

since 2014/16



Basic HOP and LOP DAG Compilation
LinregDS (Direct Solve)

X = read($1);
y = read($2);
intercept = $3; 
lambda = 0.001;
...

if( intercept == 1 ) {
ones = matrix(1, nrow(X), 1); 
X = append(X, ones);

}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem:   60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

writeScenario: 
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:
• Size propagation over ML programs 
• Worst-case sparsity / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime
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Selected Research Results
DB-Inspired Data Management in ML Systems

#4 Compressed Linear Algebra
(PVLDB’16, 

SIGMOD Record’17, 
VLDB Journal’17, CACM’18)

What-If
#3 Resource Optimization

for automatic resource 
provisioning
(SIGMOD’15)

parfor

#2 Task-Parallel Parfor Loops
hybrid parallelization 

strategies
(PVLDB’14)

#1 SystemML’s Optimizer 
rewrites, operator selection, size 
propagation, memory estimates, 

dynamic recompilation (DEBull’14)

#5 Optimizing Operator 
Fusion Plans

(PPoPP’15, CIDR’17, 
PVLDB’18)

#6 Sum-Product Optimization 
holistic framework for 

automatic rewrites (CIDR’17)

∑∏

GPU, meta learning, numerical stability, 
parameter servers, etc



Data Management in ML Systems

M. Boehm, A. Kumar, J. Yang: Data Management in Machine Learning Systems. 
Morgan & Claypool Publishers, 2019 (in preparation).

A. Kumar, M. Boehm, J. Yang: Data Management in Machine Learning: 
Challenges, Techniques, and Systems (Tutorial). SIGMOD 2017.

 Lessons Learned (subset)

 SystemDS at TU Graz



Lessons on Declarative Specification
(“The notion of declarative specification is evolving”)

 L1: Importance of Data Independence and Logical Operations
– Protection of investments (adaptation to changing technology stack)

– Simplification of development (especially library algorithms), and 
deployment (e.g., large-scale vs embedded training/scoring)

– Adaptation to data/cluster characteristics, but harder to optimize

– Allows optimizations such as resource op, compression and fusion
–

 L2: User Categories (|Alg. Users| >> |Alg. Developers|)

– Algorithm developers/researchers  Linear algebra 

– Algorithm users ML libraries

– Domain experts ML tasks / AutoML

 L3: Importance of Real Applications and Users
– Language abstractions for ML is wild west, no standards

– Unseen data and algorithm characteristics

– Source of new APIs, features and optimizations

– Variety of applications / use cases  balance generality / specialization

Alg. Users



Lessons on Data Model

 L4: Diversity of ML Algorithms / Applications
– DL + mini-batch SGD + parameter server sufficient? NO!

– a) Broad range of algorithms (stats, ML, 2nd-order optim)

– b) Model choice often a cost-benefit tradeoff

– c) Complex ML applications (rules, models, etc)

 L5: Users want Structured Data Types / Consolidated Lifecycle
– Boundary crossing for data integration, cleaning, and 

feature engineering, training, and scoring is major obstacle

– Heterogeneous input/output data, often with structure

– Poor support for provenance and model versioning

– APIs for embedded, low-latency scoring

 L6: Data Model very hard to Change
– Internal format extensions (e.g., dense/sparse, type) are major efforts

– All combinations of data representations virtually impossible to test

– Deep integration of tensors equivalent to new system

Incl. 
Meta Data



SystemDSTM

Overview and Language

 Overview
– System support for entire Data Science lifecycle

– Data integration/cleaning, ML training, serving

 Stack of Declarative Languages
– Two-dimensional language hierarchy for tasks and users

– Unified DSL and layering for interoperability, reuse,
and automatic optimization 

 Key Features
– #1: Data integration and cleaning, outlier detection, feature engineering

– #2: ML model training, tuning, validation, and serving

– #3: Data provenance and model versioning explainability

– #4: ML+Rules to incorporate domain-expert and compliance rules

– Hybrid runtime plans: local/distributed, data/task/model-parallel, federated

– Horizontal and vertical optimization of runtime plans and resource, 
including holistic exploitation of sparsity and structure

ML Lifecycle

User’s ML 
Skills

“IKT-Themenfelder:
A) Systems of Systems
B) Intelligente Systeme

D) Schnittstellen von Systemen”



SystemDSTM

Data Model and Status

 Limitations of Existing ML Systems
– ML lifecycle requires management of heterogeneous, structured data

– Existing systems limited to homogeneous tensors (ML systems -> scalar cells, 
array databases  structured cells) or 2D datasets/frames (Spark, SystemML, TF)

– Data model hardest aspect to change in existing system

 DataTensors
– Generic data model as basis for 

hierarchy of specification languages 

– Specialization during runtime 
(data reorganization, compression, etc)

 Status
– Forked SystemML 1.2

– In progress of building basic system 

– Open source soon

Time

Appliances
(e.g., 

satellites, 
production 
pipelines)

Features
(sensor readings, flags, categories)

We’re hiring PhD students
Open for Collaborations


