
Apache SystemML:
Declarative, Large-Scale Machine Learning

From System Overview to Lessons Learned

Matthias Boehm

Graz University of Technology

Graz, Austria

Acknowledgements: Apache SystemML Team,
IBM Research – Almaden, IBM Spark Technology Center

About Me

 09/2018 TU Graz, Austria
– BMVIT endowed chair for Data Management

– Data management for data science
(ML systems internals, data systems integration, deployment)

 2012-2018 IBM Research – Almaden, USA
– Declarative large-scale machine learning

– Optimizer and runtime of Apache SystemML

 2011 PhD TU Dresden, Germany
– Cost-based optimization of integration flows

– Systems support for time series forecasting

– In-memory indexing and query processing

What is an ML System?

Machine
Learning

(ML)
Statistics

Data
Mining

ML Applications
(entire KDD/DS

lifecycle)

Classification
Regression

Recommenders
Clustering

Assoc. Rules
Dim Reduction

ML System

HPC

Prog.
Language
Compilers

Compilation
TechniquesDistributed

Systems

Operating
Systems

Data
Management

Runtime Techniques
(Execution, Data Access)

HW
Architecture

Accelerators

“Anwendungsübergreifende
IKT-Forschung (5.6M €)”

Example ML Applications

 Transportation / Space
– Lemon car detection and reacquisition (classification, sequence mining)

– Airport passenger flows from WiFi data (time series forecasting)

– Satellite senor analytics (regression and correlation)

 Finance
– Water cost index based on various influencing factors (regression)

– Insurance claim cost per customer (model/feature selection, regression)

– Financial analysts survey correlation (bivariate stats w/ new tests)

 Health Care
– Breast cancer cell grow from histopathology images (classification)

– Glucose trends and warnings (clustering, classification)

– Emergency room diagnosis and patient similarity (classification, clustering)

– Patient survival analysis and prediction (Cox regression, Kaplan-Meier)

Example ML Applications, cont.

 Other Domains
– Machine data: errors and correlation (bivariate stats, sequence mining)

– Smart grid: energy demand/RES supply and weather models (forecasting)

– Visualization: dimensionality reduction into 2D (auto encoder)

 Information Extraction

– NLP contract sentences  rights/obligations (classification, error analysis)

– PDF table recognition and extraction (NMF clustering, custom processing)

– OCR: optical character recognition (preprocessing, classification)

 Algorithm Research
– User/product recommendations via various forms of NMF

– Localized, supervised metric learning (dim reduction and classification)

– Learning word embeddings via orthogonalized skip-gram

– Learning first-order rules for explainable classification

– (Dozens of state-of-the-art algorithms from the literature)

Common Large-Scale ML Challenges

 #1 Custom ML Algorithms
– Huge diversity of existing ML algorithms

– Cutting- / bleeding-edge algorithms

– Domain-specific extensions
(e.g., initializations, loss functions)

R /
Python

Dist.
Prog.

Data Scientist Systems
Programmer

Hinders quick iteration

NIPS

ICML

KDD

JMLR

ICLR

Common Large-Scale ML Challenges

 #1 Custom ML Algorithms
– Huge diversity of existing ML algorithms

– Cutting- / bleeding-edge algorithms

– Domain-specific extensions
(e.g., initializations, loss functions)

 #2 Changing Environment
– Sample vs large-scale datasets (data size)

– Dense/sparse, #features (data characteristics)

– Single-node vs cluster (cluster characteristics)

 #3 Integration and Deployment
– Data preparation and feature engineering

– Batch training/scoring

– Low-latency scoring (streaming)

– Scale-up, scale-out, GPUs (hardware)

Δ𝑒𝑛𝑣

Δ𝑡
≫
Δ𝑎𝑝𝑝

Δ𝑡

“Hellerstein’s Inequality”

R /
Python

“Write Once, Run
Anywhere”

NIPS

ICML

KDD

JMLR

ICLR

SystemML: Overview and Architecture
N. Pansare, M. Dusenberry, N. Jindal, M. Boehm, B. Reinwald, P. Sen: Deep Learning with Apache
SystemML. SysML 2018.

M. Boehm, M. Dusenberry, D. Eriksson, A. V. Evfimievski, F. Makari Manshadi, N. Pansare, B. Reinwald,
F. Reiss, P. Sen, A. Surve, S. Tatikonda: SystemML: Declarative Machine Learning on Spark. PVLDB 2016.

B. Huang*, M. Boehm, Y. Tian, B. Reinwald, S. Tatikonda, F. R. Reiss: Resource Elasticity for Large-Scale
Machine Learning. SIGMOD 2015.

M. Boehm, D. R. Burdick, A. V. Evfimievski, B. Reinwald, F. R. Reiss, P. Sen, S. Tatikonda, Y. Tian: SystemML's
Optimizer: Plan Generation for Large-Scale Machine Learning Programs. IEEE Data Eng. Bull. 2014.

M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian, D. Burdick, S. Vaithyanathan: Hybrid Parallelization
Strategies for Large-Scale Machine Learning in SystemML. PVLDB 2014.

A. Ghoting, R. Krishnamurthy, E. P. D. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
S. Vaithyanathan: SystemML: Declarative Machine Learning on MapReduce. ICDE 2011.

05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

An Example:
Linear Regression Conjugate Gradient

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y);
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {
11: q = (t(X) %*% (X %*% p))+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1;
19: }
20: write(w, $4, format="text");

Compute

conjugate

gradient Compute

step size

Update

model and

residuals

Read matrices

from HDFS

Compute initial

gradient

Note:
#1 Data Independence
#2 Implementation-
Agnostic Operations

 “Separation
of Concerns”

High-Level SystemML Architecture

Hadoop or Spark Cluster
(scale-out)

In-Memory Single Node
(scale-up)

Runtime

Compiler

Language

DML/PyDML Scripts DML (Declarative Machine
Learning Language)

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,
Spark MLContext, Spark ML,

(Scala, Python, Java DSLs)

Library of 20+
scalable algorithms

In-Progress:

GPU

since 2014/16

Basic HOP and LOP DAG Compilation
LinregDS (Direct Solve)

X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...

if(intercept == 1) {
ones = matrix(1, nrow(X), 1);
X = append(X, ones);

}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem: 60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

writeScenario:
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:
• Size propagation over ML programs
• Worst-case sparsity / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB

800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in
MEM_DISK)

X1,1

X2,1

Xm,1

Selected Research Results
DB-Inspired Data Management in ML Systems

#4 Compressed Linear Algebra
(PVLDB’16,

SIGMOD Record’17,
VLDB Journal’17, CACM’18)

What-If
#3 Resource Optimization

for automatic resource
provisioning
(SIGMOD’15)

parfor

#2 Task-Parallel Parfor Loops
hybrid parallelization

strategies
(PVLDB’14)

#1 SystemML’s Optimizer
rewrites, operator selection, size
propagation, memory estimates,

dynamic recompilation (DEBull’14)

#5 Optimizing Operator
Fusion Plans

(PPoPP’15, CIDR’17,
PVLDB’18)

#6 Sum-Product Optimization
holistic framework for

automatic rewrites (CIDR’17)

∑∏

GPU, meta learning, numerical stability,
parameter servers, etc

Data Management in ML Systems

M. Boehm, A. Kumar, J. Yang: Data Management in Machine Learning Systems.
Morgan & Claypool Publishers, 2019 (in preparation).

A. Kumar, M. Boehm, J. Yang: Data Management in Machine Learning:
Challenges, Techniques, and Systems (Tutorial). SIGMOD 2017.

 Lessons Learned (subset)

 SystemDS at TU Graz

Lessons on Declarative Specification
(“The notion of declarative specification is evolving”)

 L1: Importance of Data Independence and Logical Operations
– Protection of investments (adaptation to changing technology stack)

– Simplification of development (especially library algorithms), and
deployment (e.g., large-scale vs embedded training/scoring)

– Adaptation to data/cluster characteristics, but harder to optimize

– Allows optimizations such as resource op, compression and fusion
–

 L2: User Categories (|Alg. Users| >> |Alg. Developers|)

– Algorithm developers/researchers  Linear algebra

– Algorithm users ML libraries

– Domain experts ML tasks / AutoML

 L3: Importance of Real Applications and Users
– Language abstractions for ML is wild west, no standards

– Unseen data and algorithm characteristics

– Source of new APIs, features and optimizations

– Variety of applications / use cases  balance generality / specialization

Alg. Users

Lessons on Data Model

 L4: Diversity of ML Algorithms / Applications
– DL + mini-batch SGD + parameter server sufficient? NO!

– a) Broad range of algorithms (stats, ML, 2nd-order optim)

– b) Model choice often a cost-benefit tradeoff

– c) Complex ML applications (rules, models, etc)

 L5: Users want Structured Data Types / Consolidated Lifecycle
– Boundary crossing for data integration, cleaning, and

feature engineering, training, and scoring is major obstacle

– Heterogeneous input/output data, often with structure

– Poor support for provenance and model versioning

– APIs for embedded, low-latency scoring

 L6: Data Model very hard to Change
– Internal format extensions (e.g., dense/sparse, type) are major efforts

– All combinations of data representations virtually impossible to test

– Deep integration of tensors equivalent to new system

Incl.
Meta Data

SystemDSTM

Overview and Language

 Overview
– System support for entire Data Science lifecycle

– Data integration/cleaning, ML training, serving

 Stack of Declarative Languages
– Two-dimensional language hierarchy for tasks and users

– Unified DSL and layering for interoperability, reuse,
and automatic optimization

 Key Features
– #1: Data integration and cleaning, outlier detection, feature engineering

– #2: ML model training, tuning, validation, and serving

– #3: Data provenance and model versioning explainability

– #4: ML+Rules to incorporate domain-expert and compliance rules

– Hybrid runtime plans: local/distributed, data/task/model-parallel, federated

– Horizontal and vertical optimization of runtime plans and resource,
including holistic exploitation of sparsity and structure

ML Lifecycle

User’s ML
Skills

“IKT-Themenfelder:
A) Systems of Systems
B) Intelligente Systeme

D) Schnittstellen von Systemen”

SystemDSTM

Data Model and Status

 Limitations of Existing ML Systems
– ML lifecycle requires management of heterogeneous, structured data

– Existing systems limited to homogeneous tensors (ML systems -> scalar cells,
array databases  structured cells) or 2D datasets/frames (Spark, SystemML, TF)

– Data model hardest aspect to change in existing system

 DataTensors
– Generic data model as basis for

hierarchy of specification languages

– Specialization during runtime
(data reorganization, compression, etc)

 Status
– Forked SystemML 1.2

– In progress of building basic system

– Open source soon

Time

Appliances
(e.g.,

satellites,
production
pipelines)

Features
(sensor readings, flags, categories)

We’re hiring PhD students
Open for Collaborations

