

RealNano & ACINTECH – Projektbeispiele für Nanotechnologie in der Mikroelektronik

Reinhold Ebner, Anton Köck, Stefan Defregger

Materials Center Leoben Forschung GmbH Roseggerstrasse 12 A-8700 Leoben www.mcl.at

Materials Center Leoben

Our thematic focus

Integrated Materials, Process and Product Engineering 150 employees

15.9 Mio. €turnover

Materials Engineering

Materials design and characterization

- New materials Dteels, non-ferrous alloys, sensor materials, material compounds)
- Materials simulation
- Materials characterization & testing

Process Engineering

Process development and simulation

- New manufacturing processes
- New manufacturing tools
- **Process simulation**
- Physical based models for process control

Product Engineering

Structural components

Product design and product behaviour in service

- New products
- Materials & process integrated product dimensioning
- Simulation of product behaviour in service (we ual

testing of structures, reliability, condition monitoring)

Materials & process technology along the value chain for industry branches with materials-enabled innovations from material synthesis to the end of service

Metallurgical; Chemical; Mechanical engineering Electronics;

Manufacturing: Supply Electronics; Automotive, railway & aerospace; Mechanical engineering; Power generation: Electronics; Medical instruments; ...

Project: RealNano Industrial Realization of innovative CMOS based Nanosensors Funded by:

Objective:

Development of an innovative process chain and production tools for the industrial fabrication of CMOS based 3D-integrated nanosensors on wafer-scale.

- Project period: 1.4.2014 31.10.2016
- Project volume: 2.579 Mio. EURO

Partners:

- ams AG
- Center for Applied Nanotechnology CAN GmbH
- E V Group E. Thallner GmbH
- JKU Linz, Inst. Semiconductor & Solid State Physics
- Materials Center Leoben Forschung GmbH

m Cr

Required results from previous projects

ENIAC-Project ESIP: Efficient Silicon Multi-Chip System-in-Package Integration – Reliability, Failure Analysis and Test (Infineon Technologies AG + 41 partners, 1.4.2010 – 31.3.2013)

MNT-Eranet-Project NanoSmart:

<u>Nano</u>sensor system for <u>Smart</u> Gas Sensing Applications (AIT + 5 partners, 1.1.2011 -30.6.2013)

FP7-ICT-2013-10-Project MSP: Multi Sensor Platform for Smart Building Management, (MCL + 17 partners, 1.9.2013 – 31.8.2016)

PdZ Project RealNano - Industrial Realization of innovative CMOS based Nano-sensors, (MCL + 4 partners, 1.4.2014 – 31.10.2016),

Year

Page 4

ar 2010 2011 2012 2013 2014 2015

m C

Results of COCOA und ESiP

 Development of micro-hotplate devices for gas sensors, CMOS integrated nanocrystalline, ultrathin gas sensing films, System-on-Chip development (implementation of circuitry) based on Through-Silicon-Vias (TSVs), and 3D-Integration.

m C

Results of NanoSmart

SnO₂ single-nanowire gas sensor

SnO₂ nanowire with AuPd-nanoparticles

CuO multi-nanowire gas sensor device

- Response of CuO multi-NW sensor to H₂S!
- Implementation of SnO₂ and CuO nanowires (NW) as gas sensor components on CMOS fabricated micro-hotplate chips, functionalization with (bi)metallic nanoparticles (nanoparticles: AuPt, AuPd, PtPd,...), optimizing gas sensor performance!

RealNano: Evolving nanosensors from lab-scale to wafer-scale!

Partner roles (unique scientific & technological expertise along the value chain available in Austria)

JKU	Synthesis of (bi)metallic nanoparticles	
CAN	Application of industrial nanoparticle fabrication process, and upscaling of the	
	nanoparticle fabrication process for commercialization	
MCL	Fabrication of gas sensors based on ultrathin nanocrystalline films and	
(CL)	nanowires (SnO ₂ , CuO, ZnO)	
	Upscaling the nanowire fabrication procedure, development of tools for	
EVG	nanowire transfer to CMOS wafer, and development of spray pyrolysis tool	
	capable for production on 200 mm wafer scale	
AMS	CMOS integration of gas sensors, fabrication of microhotplate chips and 3D-	
	integrated devices on 200 mm wafer scale	

Project: ACINTECH Active Interposer Technology for 3D-Integration of electronics devices

Funded by:

Objective:

Developing of fundamentals to increase the yield and reliability of 3D-integrated microelectronic systems including the development of robust designs and processes for advanced connectivity technology in electronic circuits.

Project period: 1.2.2013 – 31.1.2016

Project volume: 1.287 Mio. EURO

Partners:

- ams AG
- Materials Center Leoben Forschung GmbH
- Montanuniversität Leoben

- Increased & new functionalities due to 3D integration (More-than-Moore)
- Challenges:
 - Safety against thermomechanical failure modes
 - Robust material, process and design concepts for reliable structures

Workflow

Robust design and processes for reliable 3D-integrated structures

Defining and manufacturing of test structures

Phenomenological material models

Material data determination (µm / nm scale)

Highlights

- Beam bending method for thin layers (100 – 300 nm) for residual stress profile characterization
- High resolution synchrotronmeasurements for determining residual stress profiles in thin TSV layers

Page 10

Beam bending method for residual stress characterization in thin films

m C L

Beam bending method for residual stress characterization in thin films

 Deflection of free beam end while removing coating layer by layer at the other end

 Residual stress profile in a 250 nm thick multilayer coating.

m C L

Synchrotron based X-ray nano beam residual stress measurements

Full and sectioned TSVs were characterized position-resolved at ID13 beamline of ESRF in Grenoble using a beam size of 100nm in diameter.

Spatial resolution: < 100nm °!

1st International Conference

nano FIS 2014

Functional Integrated nano Systems

3 - 5 December 2014, Graz/Austria

nanoFIS 2014 intends to contribute to challenges and topics covered by the Mission, Vision & Strategy of the European Micro- & Nanoelectronics and to increase visibility in particular in the More-Than-Moore domain.

www.nanofis.net

